Tunable doping and band gap of graphene on functionalized hexagonal boron nitride with hydrogen and fluorine.
نویسندگان
چکیده
First-principles calculations have been used to investigate the structural and electronic properties of graphene supported on functionalized hexagonal boron nitride (h-BN) with hydrogen and fluorine atoms. Our results show that the hydrogenation and fluorination of the h-BN substrate modify the electronic properties of graphene. Interactions of graphene with fully hydrogenated or fully fluorinated h-BN and half-hydrogenated and half-fluorinated h-BN with H at N sites and F at the B sites can lead to n- or p-type doping of graphene. The different doping effect may be attributed to the significant charge transfer from graphene to the substrate. Interestingly, when graphene is supported on the functionalized h-BN with H at B sites and F at N sites (G/HBNF), a finite band gap of 79 meV in graphene is opened due to the equivalence breaking of two sublattices of graphene, and can be effectively modulated by changing the interlayer spacing, increasing the number of functionalized BN layers, and applying an external electric field. More importantly, the modification of the band gap in G/HBNF with a functionalized BN bilayer by the electric field is more pronounced than that of the single-layer h-BN, which is increased to 408 meV with 0.8 V Å(-1). Thus, graphene on chemically modified h-BN with a tunable and sizeable band gap may provide a novel way for fabricating high-performance graphene-based nanodevices.
منابع مشابه
Tunable band gaps in bilayer graphene-BN heterostructures.
We investigate band gap tuning of bilayer graphene between hexagonal boron nitride sheets, by external electric fields. Using density functional theory, we show that the gap is continuously tunable from 0 to 0.2 eV and is robust to stacking disorder. Moreover, boron nitride sheets do not alter the fundamental response from that of free-standing bilayer graphene, apart from additional screening....
متن کاملElectronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field
Abstract: In this study, using density functional theory and the SIESTA computationalcode, we investigate the electronic and optical properties of the armchair graphenenanoribbons and the armchair boron nitride nanoribbons of width 25 in the presence of atransverse external electric field. We have observed that in the absence of the electricfield, these structures are se...
متن کاملTheory of resonant tunneling in bilayer-graphene/hexagonal-boron-nitride heterostructures
A theory is developed for calculating vertical tunneling current between two sheets of bilayer graphene separated by a thin, insulating layer of hexagonal boron nitride, neglecting many-body effects. Results are presented using physical parameters that enable comparison of the theory with recently reported experimental results. Observed resonant tunneling and negative differential resistance in...
متن کاملLine defects and induced doping effects in graphene, hexagonal boron nitride and hybrid BNC.
Effects on the atomic structure and electronic properties of two-dimensional graphene (G) and h-BN sheets related to the coexistence of dopants and defects are investigated by using density functional theory based methods. Two types of extended line defects are considered for pristine G and h-BN sheets. In these sheets, the presence of individual doping increases the charge transport character....
متن کاملSemiconducting hexagonal boron nitride for deep ultraviolet photonics
Hexagonal boron nitride (hBN) has been recognized as an important material for various device applications and as a template for graphene electronics. Low-dimensional hBN is expected to possess rich physical properties, similar to graphene. The synthesis of wafer-scale semiconducting hBN epitaxial layers with high crystalline quality and electrical conductivity control is highly desirable. We r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 14 شماره
صفحات -
تاریخ انتشار 2013